
WFUZZ !
for Penetration Testers!
Christian Martorella & Xavier Mendez!
SOURCE Conference 2011!
Barcelona!
!
!

Who we are?

•  Security Consultants at Verizon Business Threat
and Vulnerability Team EMEA

•  Members of Edge-security.com

What is this presentation
about?

WFUZZ: a Web Application brute forcer / fuzzer

And how this tool can be used in your
Penetration test engagements

What is WFUZZ?

It ́s a web application brute forcer, that allows you to perform
complex brute force attacks in different web application
parts as: parameters, authentication, forms, directories/files,
headers files, etc.

It has complete set of features, payloads and encodings.

WFUZZ

•  Started a few years ago and have been improving until
now (and hopefully will continue improving)

•  Has been presented at Blackhat Arsenal US 2011

•  It’s included in the TOP 125 Security tools by Insecure.org

Key features

•  Multiple injection points

•  Advance Payload management (Iterators)

•  Multithreading

•  Encodings

•  Result filtering

•  Proxy and SOCKS support (multiple proxies)

New features

•  Added HEAD method scanning

•  Fuzzing in HTTP methods

•  Added follow HTTP redirects option

New features

•  Plugin framework, allowing to execute actions on response

contents, or when a condition are met

•  Multiple filtering (show, hide, filter expression, regex)

•  Attack pause/resume

•  Delay between requests

Extensibility

Iterator

Encoders

Payload

Printer

Printer

Encoders

Payload

Payloads, encoders , iterators, plugins and printers.

FUZZ Engine

Plugin

Plugin

Payloads

 - file: reads from a file

 - stdin: reads from the stdin (cwel)

 - list: define a list of objects (1-2-3-4-5)

 - hexrand: define a hexa random list (

 - range: define a numeric range (1-30)

 - names: creates potential user names combinations (john.doe,j.doe,etc)

 - hexrange: define a random hexa range

 - overflow:

A payload is what generates the list of
requests to send in the session.

Encoders

 - binary_ascii

 - double_nibble_hexa

 - md5

 - none

 - sha1

 - utf8_binary

 - html_encoder_hexa

 - uri_unicode

 - oracle_char

 - random_uppercase

 - html_encoder_decimal

 - urlencode

 - double_urlencode

 - first_nibble_hexa

 - html_encoder

 - uri_hexadecimal

 - base64

 - mssql_char

 - uri_double_hexadecimal

 - mysql_char

 - utf8

 - second_nibble_hexa

Converts information from one format to another

word

c47d187067c6
cf953245f128b

5fde62a

MD5

Base64 encoder

•  Encoders.py

Iterators

 Product

 Zip

 Chain

An iterator allows to process every element
of a container while isolating from the
internal structure of the container.

An Iterator could be created from
combining iterables:

1 2 3

A B C

A1 A2 A3 B1 B2 B3 C1 …

A1 B1 C1

A B C 1 2 3

Putting it all together

wfuzz.py -z range,0-2,md5 –z list,a-b-c -m product –o

magictree http://www.myweb.com/FUZZ

 - Payload: range

 - Encoder: md5

 - Printer: magictree

- Iterator: product

Need for speed

60% faster

Up to 900 request /second

A brute force attack is a method to determine an
unknown value by using an automated process to
try a large number of possible values.

What can be bruteforced?

"   Predictable credentials (HTML Forms and HTTP)!

"   Predictable sessions identifier (session id’s)!

"   Predictable resource location (directories and files)!

"   Parameters names, values !

"   Cookies!

"   Web Services methods!

Where?

"   Headers!

"   Forms (POST)!

"   URL (GET)!

"   Authentication!

Basic usage

wfuzz.py -c –z file,wordlist/general/common.txt http://
www.target.com/FUZZ

Basic usage - verbose

wfuzz.py -c –z file,wordlist/general/common.txt -v http://
www.target.com/FUZZ

Basic filtering

wfuzz.py -c -z file,wordlist/general/test.txt --hc 404 http://
target.com/FUZZ

Basic filtering

Don’t underestimate a 404. Use the Baseline!

Advance filtering

Built-in Expression filter
parser

But I want the
request X but
with this and

not this....

wfuzz.py –filter “c=200 and
(w>300 and w<600)”

Range sweeping

wfuzz.py -c -z file,hosts.txt -z list,admin-phpMyAdmin-test
FUZZ/FUZ2Z

wfuzz.py -c -z range,1-254 -z list,admin- phpMyAdmin-test
http://192.168.0.FUZZ/FUZ2Z

Scanning internal networks

Scanning through proxies!

wfuzz -x serverip:53 -c -z range -r 1-254 --hc XXX -t 5 http://10.10.1.FUZZ

-x set proxy
--hc is used to hide the XXX error code from the results, as machines w/o webserver will
fail the request.

Server/w deployed
proxy
Tester

servers

servers

servers

servers

servers

#
Using multiple encodings per
payload #

wfuzz.py – z list,..,double_nibble_hexa@second_nibble_hexa

@uri_double http://targetjboss.com/FUZZ/jmx-console

#
Fuzzing using 3 payloads #

wfuzz.py -z list,dir1-dir2 -z file,wordlist/general/common.txt -
z list,jsp-php-asp http://target.com/FUZZ/FUZ2Z.FUZ3Z

#
Username payload#

wfuzz.py -c -z username,John-doe -z list,123456- admin-
password-love -b "user=FUZZ&pass=FUZ2Z" http://
localhost:8888/test/login.php

#
User-Agent brute forcing#

Password cracking

"   Vertical scanning (different password for each user)

"   Horizontal scanning (different usernames for common
passwords)

"   Diagonal scanning (different username/password each
round)

"   Three dimension (Horizontal, Vertical or Diagonal +
Distributing source IP)

"   Four dimensions (Horizontal, Vertical or Diagonal + Time
Delay + Distributing Source IP)

Password cracking

Diagonal

•  admin/test

•  guest/guest

•  user/1234x

Horizontal

admin/test

guest/test

user/test

Password cracking Horizontal

wfuzz –z list,pass1-pass –z list,us1-us2 http://
target.com/user=FUZ2Z &pass=FUZZ

Password cracking#
Three dimensional

wfuzz –z list,pass1-pass –z list,us1-us2 –s 1 http://
target.com/user=FUZ2Z &pass=FUZZ

Password cracking#
Four dimensional

Wfuzz –z list,pass1-pass –z list,us1-us2 –s 1 –p ip:8080-
ip2:8080-ip3:8088 http://target.com/user=FUZ2Z
&pass=FUZZ

Proxy
HTTP 1

Proxy
HTTP

...

TOR

Attacker
 Target

Load balancing

#
Permutation payload #

wfuzz.py -c -z permutation,abcdefghijk-2 -z permutation,
1234567890-2 --hc 404 --hl BBB http://localhost:8888/test/
parameter.php? action=FUZZ{a}FUZ2Z{a}

Scripting engine

FUZZ Engine

Plugin

HTTP

Engine

Plugin

Engine

Plugin

Fuzz

Result

Fuzz

Result

Payload

“Parsing” HTTP Response

“Grep” HTTP responses

“Grep” HTTP responses

Evidence collection

Imagine an internal assessment 100s or 1000s of webapps
and very little time?

Under development

Under development

•  Multi step or sequences

Do X
 IF
COND

Do Y

Using external tools

Magic tree integration

?

Latest news and versions

•  http://code.google.com/p/wfuzz

•  http://edge-security.blogspot.com

References

" http://www.owasp.org/index.php/Testing_for_Brute_Force_(OWASP-AT-004)

" http://projects.webappsec.org/Predictable-Resource-Locatio

" http://projects.webappsec.org/Credential-and-Session-Prediction

" http://projects.webappsec.org/Brute-Force

" http://www.technicalinfo.net/papers/StoppingAutomatedAttackTools.html

" http://gawker.com/5559346

" http://tacticalwebappsec.blogspot.com/2009/09/distributed-brute-force-attacks-against.html

" Detecting Malice, Rsnake

