
WFUZZ !
for Penetration Testers!
Christian Martorella & Xavier Mendez!
SOURCE Conference 2011!
Barcelona!
!
!



Who we are?

•  Security Consultants at Verizon Business Threat 
and Vulnerability Team EMEA

•  Members of Edge-security.com









What is this presentation 
about?

WFUZZ: a Web Application brute forcer / fuzzer
And how this tool can be used in your 
Penetration test engagements



What is WFUZZ?

It ́s a web application brute forcer, that allows you to perform 
complex brute force attacks in different web application 
parts as: parameters, authentication, forms, directories/files, 
headers files, etc. 

It has complete set of features, payloads and encodings. 



WFUZZ

•  Started a few years ago and have been improving until 
now (and hopefully will continue improving)

•  Has been presented at Blackhat Arsenal US 2011

•  It’s included in the TOP 125 Security tools by Insecure.org 



Key features

•  Multiple injection points

•  Advance Payload management (Iterators)

•  Multithreading

•  Encodings

•  Result filtering

•  Proxy and SOCKS support (multiple proxies)



New features

•  Added HEAD method scanning 

•  Fuzzing in HTTP methods

•  Added follow HTTP redirects option



New features
•  Plugin framework, allowing to execute actions on response 

contents, or when a condition are met

•  Multiple filtering (show, hide, filter expression, regex)

•  Attack pause/resume

•  Delay between requests



Extensibility
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Payloads, encoders , iterators, plugins and printers.

FUZZ Engine

Plugin


Plugin




Payloads

 - file:  reads from a file

 - stdin: reads from the stdin (cwel)

 - list: define a list of objects (1-2-3-4-5)

 - hexrand: define a hexa random list (

 - range: define a numeric range (1-30)

 - names: creates potential user names combinations (john.doe,j.doe,etc)

 - hexrange: define a random hexa range

 - overflow: 

A payload is what generates the list of 
requests to send in the session.



Encoders

 - binary_ascii
 - double_nibble_hexa
 - md5
 - none
 - sha1
 - utf8_binary
 - html_encoder_hexa
 - uri_unicode
 - oracle_char
 - random_uppercase
 - html_encoder_decimal


 - urlencode
 - double_urlencode
 - first_nibble_hexa
 - html_encoder
 - uri_hexadecimal
 - base64
 - mssql_char
 - uri_double_hexadecimal
 - mysql_char
 - utf8
 - second_nibble_hexa


Converts information from one format to another
word


 
c47d187067c6
cf953245f128b

5fde62a


MD5



Base64 encoder
•  Encoders.py



Iterators

  Product

  Zip

  Chain

An iterator allows to process every element 
of a container while isolating from the 
internal structure of the container.

An Iterator could be created from 
combining iterables:


1 2 3


A B C


A1 A2 A3 B1 B2 B3 C1 …


A1 B1 C1


A B C 1 2 3




Putting it all together
wfuzz.py -z range,0-2,md5 –z list,a-b-c -m product –o 

magictree http://www.myweb.com/FUZZ 

 - Payload: range
 - Encoder: md5
 - Printer: magictree

- Iterator: product




Need for speed

60% faster

Up to 900 request /second 





A brute force attack is a method to determine an 
unknown value by using an automated process to 
try a large number of possible values.



What can be bruteforced?

"   Predictable credentials (HTML Forms and HTTP)!

"   Predictable sessions identifier (session id’s)!

"   Predictable resource location (directories and files)!

"   Parameters names, values !

"   Cookies!

"   Web Services methods!



Where?

"   Headers!

"   Forms (POST)!

"   URL (GET)!

"   Authentication!





Basic usage 

wfuzz.py -c –z file,wordlist/general/common.txt http://
www.target.com/FUZZ



Basic usage - verbose

wfuzz.py -c –z file,wordlist/general/common.txt -v http://
www.target.com/FUZZ





Basic filtering
wfuzz.py -c -z file,wordlist/general/test.txt --hc 404 http://
target.com/FUZZ 



Basic filtering
Don’t underestimate a 404. Use the Baseline!



Advance filtering

Built-in Expression filter 
parser 

But I want the 
request X but 
with this and 

not this....

wfuzz.py –filter “c=200 and 
(w>300 and w<600)”





Range sweeping

wfuzz.py -c -z file,hosts.txt -z list,admin-phpMyAdmin-test 
FUZZ/FUZ2Z 



wfuzz.py -c -z range,1-254 -z list,admin- phpMyAdmin-test 
http://192.168.0.FUZZ/FUZ2Z 



Scanning internal networks

Scanning through proxies!

 
wfuzz -x serverip:53 -c -z range -r 1-254 --hc XXX -t 5 http://10.10.1.FUZZ 
 
-x set proxy 
--hc is used to hide the XXX error code from the results, as machines w/o webserver will 
fail the request. 



Server/w  deployed 
proxyTester
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#
Using multiple encodings per 
payload #

wfuzz.py – z list,..,double_nibble_hexa@second_nibble_hexa

@uri_double http://targetjboss.com/FUZZ/jmx-console 



#
Fuzzing using 3 payloads #


wfuzz.py -z list,dir1-dir2 -z file,wordlist/general/common.txt -
z list,jsp-php-asp http://target.com/FUZZ/FUZ2Z.FUZ3Z 



#
Username payload#

wfuzz.py -c -z username,John-doe -z list,123456- admin-
password-love -b "user=FUZZ&pass=FUZ2Z" http://
localhost:8888/test/login.php 



#
User-Agent brute forcing#




Password cracking
"   Vertical scanning (different password for each user)

"   Horizontal scanning (different usernames for common 
passwords)

"   Diagonal scanning (different username/password each 
round)

"   Three dimension (Horizontal, Vertical or Diagonal + 
Distributing source IP)

"   Four dimensions (Horizontal, Vertical or Diagonal + Time 
Delay + Distributing Source IP)



Password cracking

Diagonal

•  admin/test

•  guest/guest

•  user/1234x

Horizontal
admin/test

guest/test

user/test



Password cracking Horizontal 

wfuzz –z list,pass1-pass –z list,us1-us2 http://
target.com/user=FUZ2Z &pass=FUZZ



Password cracking#
Three dimensional

wfuzz –z list,pass1-pass –z list,us1-us2 –s 1 http://
target.com/user=FUZ2Z &pass=FUZZ



Password cracking#
Four dimensional

Wfuzz –z list,pass1-pass –z list,us1-us2 –s 1 –p ip:8080-
ip2:8080-ip3:8088 http://target.com/user=FUZ2Z 
&pass=FUZZ



Proxy 
HTTP 1

Proxy 
HTTP

...

TOR

Attacker Target

Load balancing



#
Permutation payload #


wfuzz.py -c -z permutation,abcdefghijk-2 -z permutation,
1234567890-2 --hc 404 --hl BBB http://localhost:8888/test/
parameter.php? action=FUZZ{a}FUZ2Z{a} 



Scripting engine
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“Parsing” HTTP Response



“Grep” HTTP responses



“Grep” HTTP responses



Evidence collection
Imagine an internal assessment 100s or 1000s of webapps  
and very little time?





Under development 



Under development
•  Multi step or sequences

Do X IF 
COND

Do Y



Using external tools



Magic tree integration



?



Latest news and versions

•  http://code.google.com/p/wfuzz

•  http://edge-security.blogspot.com
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