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Who we are?


•  Security Consultants at Verizon Business Threat 
and Vulnerability Team EMEA


•  Members of Edge-security.com













What is this presentation 
about?


WFUZZ: a Web Application brute forcer / fuzzer

And how this tool can be used in your 
Penetration test engagements




What is WFUZZ?


It ́s a web application brute forcer, that allows you to perform 
complex brute force attacks in different web application 
parts as: parameters, authentication, forms, directories/files, 
headers files, etc. 


It has complete set of features, payloads and encodings. 




WFUZZ


•  Started a few years ago and have been improving until 
now (and hopefully will continue improving)


•  Has been presented at Blackhat Arsenal US 2011


•  It’s included in the TOP 125 Security tools by Insecure.org 




Key features


•  Multiple injection points


•  Advance Payload management (Iterators)


•  Multithreading


•  Encodings


•  Result filtering


•  Proxy and SOCKS support (multiple proxies)




New features


•  Added HEAD method scanning 


•  Fuzzing in HTTP methods


•  Added follow HTTP redirects option




New features

•  Plugin framework, allowing to execute actions on response 

contents, or when a condition are met


•  Multiple filtering (show, hide, filter expression, regex)


•  Attack pause/resume


•  Delay between requests




Extensibility
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Payloads, encoders , iterators, plugins and printers.


FUZZ Engine


Plugin




Plugin






Payloads


 - file:  reads from a file


 - stdin: reads from the stdin (cwel)


 - list: define a list of objects (1-2-3-4-5)


 - hexrand: define a hexa random list (


 - range: define a numeric range (1-30)


 - names: creates potential user names combinations (john.doe,j.doe,etc)


 - hexrange: define a random hexa range


 - overflow: 


A payload is what generates the list of 
requests to send in the session.




Encoders


 - binary_ascii

 - double_nibble_hexa

 - md5

 - none

 - sha1

 - utf8_binary

 - html_encoder_hexa

 - uri_unicode

 - oracle_char

 - random_uppercase

 - html_encoder_decimal




 - urlencode

 - double_urlencode

 - first_nibble_hexa

 - html_encoder

 - uri_hexadecimal

 - base64

 - mssql_char

 - uri_double_hexadecimal

 - mysql_char

 - utf8

 - second_nibble_hexa




Converts information from one format to another

word
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5fde62a




MD5




Base64 encoder

•  Encoders.py




Iterators


  Product


  Zip


  Chain


An iterator allows to process every element 
of a container while isolating from the 
internal structure of the container.


An Iterator could be created from 
combining iterables:




1 2 3




A B C




A1 A2 A3 B1 B2 B3 C1 …




A1 B1 C1




A B C 1 2 3






Putting it all together

wfuzz.py -z range,0-2,md5 –z list,a-b-c -m product –o 

magictree http://www.myweb.com/FUZZ 


 - Payload: range

 - Encoder: md5

 - Printer: magictree


- Iterator: product






Need for speed


60% faster


Up to 900 request /second 







A brute force attack is a method to determine an 
unknown value by using an automated process to 
try a large number of possible values.




What can be bruteforced?


"   Predictable credentials (HTML Forms and HTTP)!

"   Predictable sessions identifier (session id’s)!

"   Predictable resource location (directories and files)!

"   Parameters names, values !

"   Cookies!

"   Web Services methods!



Where?


"   Headers!

"   Forms (POST)!

"   URL (GET)!

"   Authentication!





Basic usage 


wfuzz.py -c –z file,wordlist/general/common.txt http://
www.target.com/FUZZ




Basic usage - verbose


wfuzz.py -c –z file,wordlist/general/common.txt -v http://
www.target.com/FUZZ







Basic filtering

wfuzz.py -c -z file,wordlist/general/test.txt --hc 404 http://
target.com/FUZZ 




Basic filtering

Don’t underestimate a 404. Use the Baseline!




Advance filtering


Built-in Expression filter 
parser 


But I want the 
request X but 
with this and 

not this....


wfuzz.py –filter “c=200 and 
(w>300 and w<600)”







Range sweeping


wfuzz.py -c -z file,hosts.txt -z list,admin-phpMyAdmin-test 
FUZZ/FUZ2Z 





wfuzz.py -c -z range,1-254 -z list,admin- phpMyAdmin-test 
http://192.168.0.FUZZ/FUZ2Z 




Scanning internal networks


Scanning through proxies!

 
wfuzz -x serverip:53 -c -z range -r 1-254 --hc XXX -t 5 http://10.10.1.FUZZ 
 
-x set proxy 
--hc is used to hide the XXX error code from the results, as machines w/o webserver will 
fail the request. 




Server/w  deployed 
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Tester
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#
Using multiple encodings per 
payload #


wfuzz.py – z list,..,double_nibble_hexa@second_nibble_hexa


@uri_double http://targetjboss.com/FUZZ/jmx-console 




#
Fuzzing using 3 payloads #



wfuzz.py -z list,dir1-dir2 -z file,wordlist/general/common.txt -
z list,jsp-php-asp http://target.com/FUZZ/FUZ2Z.FUZ3Z 




#
Username payload#


wfuzz.py -c -z username,John-doe -z list,123456- admin-
password-love -b "user=FUZZ&pass=FUZ2Z" http://
localhost:8888/test/login.php 




#
User-Agent brute forcing#





Password cracking

"   Vertical scanning (different password for each user)


"   Horizontal scanning (different usernames for common 
passwords)


"   Diagonal scanning (different username/password each 
round)


"   Three dimension (Horizontal, Vertical or Diagonal + 
Distributing source IP)


"   Four dimensions (Horizontal, Vertical or Diagonal + Time 
Delay + Distributing Source IP)




Password cracking


Diagonal


•  admin/test


•  guest/guest


•  user/1234x


Horizontal

admin/test


guest/test


user/test




Password cracking Horizontal 


wfuzz –z list,pass1-pass –z list,us1-us2 http://
target.com/user=FUZ2Z &pass=FUZZ




Password cracking#
Three dimensional


wfuzz –z list,pass1-pass –z list,us1-us2 –s 1 http://
target.com/user=FUZ2Z &pass=FUZZ




Password cracking#
Four dimensional


Wfuzz –z list,pass1-pass –z list,us1-us2 –s 1 –p ip:8080-
ip2:8080-ip3:8088 http://target.com/user=FUZ2Z 
&pass=FUZZ




Proxy 
HTTP 1


Proxy 
HTTP


...


TOR


Attacker
 Target


Load balancing




#
Permutation payload #



wfuzz.py -c -z permutation,abcdefghijk-2 -z permutation,
1234567890-2 --hc 404 --hl BBB http://localhost:8888/test/
parameter.php? action=FUZZ{a}FUZ2Z{a} 




Scripting engine


FUZZ Engine
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“Parsing” HTTP Response




“Grep” HTTP responses




“Grep” HTTP responses




Evidence collection

Imagine an internal assessment 100s or 1000s of webapps  
and very little time?







Under development 





Under development

•  Multi step or sequences


Do X
 IF 
COND


Do Y




Using external tools




Magic tree integration




?




Latest news and versions


•  http://code.google.com/p/wfuzz


•  http://edge-security.blogspot.com







References

" http://www.owasp.org/index.php/Testing_for_Brute_Force_(OWASP-AT-004)


" http://projects.webappsec.org/Predictable-Resource-Locatio


" http://projects.webappsec.org/Credential-and-Session-Prediction


" http://projects.webappsec.org/Brute-Force


" http://www.technicalinfo.net/papers/StoppingAutomatedAttackTools.html


" http://gawker.com/5559346


" http://tacticalwebappsec.blogspot.com/2009/09/distributed-brute-force-attacks-against.html


" Detecting Malice, Rsnake



